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AN ANALYTICAL COMPARISON OF SOME ELFCTROMAGNETIC SYSTEMS 

FC)R REMOVING MOMENTUM STORED BY A SATELLITE 

ATTITUDE CONTROL SYSTEM 

By Stuar t  C .  Brown 

Ames Research Center 
Moffett F ie ld ,  C a l i f .  

SUMMARY 

The report  summarizes the  r e s u l t s  of a study of methods of removing 
angular momentum stored i n  a s a t e l l i t e  by producing an electromagnetic torque 
by coupling the  vehicle with the  e a r t h ' s  magnetic f i e l d .  The coupling i s  
achieved by inducing a magnetic moment by means of an e l e c t r i c  current i n  
c o i l s  on the  vehicle .  The conventional method of control l ing the  removal of 
momentum requires t h a t  the  l o c a l  magnetic f i e l d  be measured with a magnetom- 
e t e r ,  and tha t  a computation be performed on the  measured f i e l d  components t o  
prescribe the  current i n  each c o i l .  An adaptive method, however, cam also be 
used. In  t h i s  method, instead of a magnetometer, an accurate determination of 
changes i n  stored angular momentum due t o  selected changes i n  magnetic moment 
i s  used. A s  a consequence of t h i s  approach, t h e  adaptive momentum removal 
method i s  applicable only f o r  vehicles  i n  which a r e l a t i v e l y  high gain 
a t t i t u d e  cont ro l  system i s  required.  

The report  discusses the  propert ies  and l imi ta t ions  of a proportional 
control  system and an on-off control  system f o r  each of the  two c lasses  of 
momentum removal systems. A general  conclusion can be drawn concerning a l l  
the  control  systems s tudied.  A s  i s  t o  be expected, i f  the gain of a momentum 
removal system i s  too  low the  performance i s  sluggish.  There i s  a l so  an upper 
l i m i t  t o  the  choice of gain,  however, for with too high a gain,  the stored 
momentum i s  not removed e f f i c i e n t l y .  Par t icu lar  conclusions r e s u l t  from the  
study of the on-off adaptive system. Whereas t h i s  system does not need a 
magnetometer, it i s  shown t o  be more c r i t i c a l  than other systems i n  the  accu- 
racy needed f o r  momentum-wheel speed measurements. Other parameters f o r  the  
adaptive system which were investigated but found t o  be of l e s s  importance 
include dead zone, sampling i n t e r v a l ,  and momentum wheel control  system time 
c on s t  ant . 

TNTRODUCTION 

I 

A number of invest igat ions of t h e  appl icat ion of electromagnetic torques 
t o  cont ro l  the  a t t i t u d e  of s a t e l l i t e s  have been made ( r e f s .  1 t o  6 ) .  These 
torques have been considered both f o r  primary a t t i t u d e  control ,  as w e l l  as f o r  
unloading momentum stored by the primary a t t i t u d e  cont ro l  system. The use of 



electromagnetic torques i s  of p a r t i c u l a r  i n t e r e s t  f o r  long term missions since 
no expendable f u e l  i s  required.  However, t h e  applied magnetic torque can only 
l i e  i n  a plane perpendicular t o  the  e a r t h ' s  magnetic f i e l d  at the  p a r t i c u l a r  
posi t ion i n  t h e  o r b i t .  Hence, t h e  a t ta inable  accuracy of a primary magnetic 
control  system would be dependent on the  dis turbing torques present,  and would 
be p a r t i c u l a r l y  dependent on those which a c t  i n  a d i rec t ion  p a r a l l e l  with t h e  
e a r t h ' s  magnetic f i e l d .  The cases of i n t e r e s t  f o r  t h e  present report  a re  
those for which pointing accuracy requirements a re  s u f f i c i e n t l y  high so t h a t  a 
momentum storage device i s  needed f o r  t h e  primary cont ro l  system. The mag- 
n e t i c  torques are used t o  reduce the  resu l t ing  stored angular momentum. This 
momentum could be stored e i t h e r  by momentum wheels or by components of momen- 
tum of unrestrained gyros. For the  l a t t e r  case,  the  momentum t o  be counter- 
acted i s  assumed t o  be known i n  component form. 

In  the  previously c i t e d  references,  s i m i l a r  magnetic unloading systems 
have been invest igated t o  determine the  magnetic moment which would apply a 
correct ive torque as close as possible t o  a desired d i rec t ion ,  and a l so  would 
l i e  i n  the  plane perpendicular t o  the e a r t h ' s  magnetic f i e l d .  For most cases, 
t h i s  desired d i rec t ion  w a s  taken as t h a t  opposite the  angular momentum vector  
which represented the  t o t a l  momentum stored by a t t i tude-cont ro l  wheels. Sys- 
tems with proportional magnetic moments involved the  calculat ion of a vector 
product whose components determined the  magnitude of magnetic-moment compo- 
nents t o  be generated by three  orthogonal c o i l s .  These references d i f f e r  
ch ief ly  i n  the s implif icat ions made of t h e  proportional system. The simpli-  
f i ca t ions  considered i n  these reports  include several  combinations of on-off 
values of magnetic moment components generated i n  the  vehicle and on-off meas- 
ured values of i n e r t i a  wheel momentum and t h e  e a r t h ' s  l o c a l  magnetic f i e l d .  

For the  present report ,  vehicles  are  considered f o r  which magnetic 
unloading disturbances t o  the  a t t i t u d e  cont ro l  system and peak power require-  
ments should be minimized. Hence, r e l a t i v e l y  s m a l l  torques are  applied, and 
the unloading system a c t s  more or l e s s  continuously t o  counteract the  d is turb-  
ing torques.  The performance of systems with two forms of magnetic moment 
components w i l l  be compared. In one system, the components are  proportional 
t o  a function of the  measured magnetic f i e l d  and stored angular momentum. In  
the other system, the  magnetic moment components depend on the sign of t h e  
same continuous function, and hence t h e  on-off system i s  l e s s  of a departure 
from a proportional system than the systems considered i n  references 3 and 5 .  
In addition, a closed-form solut ion of the proportional case w i l l  be obtained 
through use of a s implif icat ion of the e a r t h ' s  magnetic f i e l d  representat ion.  
This solut ion provides qua l i ta t ive  information on system performance. 

Whereas t h e  previous s tud ies  were concerned with systems which used both 
measured stored momentum and the  e a r t h ' s  magnetic f i e l d ,  the method ch ief ly  
investigated i n  t h i s  report  requires knowledge only of the former. By per-  
turbing magnetic moment and determining the  resu l t ing  change i n  the stored 
angular momentum, t h e  desired value of t o t a l  magnetic moment can be obtained. 
Since a magnetometer i s  not needed t o  measure the  l o c a l  e a r t h ' s  magnetic 
f i e l d ,  but r a t h e r  the  vehicle  i s  made t o  adjust  i t s  momentum without d i r e c t  
knowledge of p a r t  of the  environment, the  method can be cal led adaptive.  

.. . 



The determination of t h e  magnetic moment i s  made on the  bas i s  of changes 
i n  a quadratic s ca l a r  funct ion of t he  stored angular momentum. This funct ion 
i s  selected so t h a t  t he  r e su l t i ng  applied magnetic moment i s  the  same as t h a t  
obtained by the  previously discussed magnetometer systems f o r  e i t h e r  t h e  pro- 
por t iona l  or on-off cases .  This s imi l a r i t y  i s  shown t o  e x i s t  as long as cer -  
t a i n  system imperfections a re  neglected.  I n  addi t ion,  t he  quadratic funct ion 
i s  use fu l  as a Liapunov funct ion t o  demonstrate s t a b i l i t y  f o r  t he  continuous 
case with e i t h e r  proport ional  or on-off applied magnetic moments. 

The analyses a re  corroborated by numerical ca lcu la t ions  performed with a 
d i g i t a l  computer. Computations are  included which i l l u s t r a t e  e f f e c t s  of 
ex te rna l  disturbance torques.  F ina l ly ,  numerical ca lcu la t ions  a re  made t o  
show the  s e n s i t i v i t y  of t he  on-off adaptive system t o  such quan t i t i e s  as 
s tored momentum measurement e r r o r s .  

SYMBOLS 

A 

- 
B 

B r  

C 

G 

- 
H 

I Hm 

matrix f o r  transforming a vector from an i n e r t i a l  coordinate 
system t o  a ro ta t ing  coordinate system 

ear th '  s magnetic f i e l d  

component of t he  e a r t h ' s  magnetic f i e l d  assumed t o  be ro t a t ing  
at a constant r a t e  r e l a t i v e  t o  t h e  vehicle  f o r  t he  simpli-  
f i e d  ana lys i s  

( t a b l e  I) 
numerical values of magnetic f i e l d  used i n  the  ca lcu la t ions  

matrix of elements which represent t he  vector  operations 
given i n  equation (12)  or (24 )  

diagonal matrix representing f i r s t  -order dynamics of t he  
moment wheel a t t i t u d e  cont ro l  system 

angular momentum of momentum wheels 

design maximum value of wheel angular momentum 

wheel angular momentum measurement e r r o r  

normalized wheel angular momentum, - 
Hm 

numerical i n i t i a l  values of h used i n  t h e  ca lcu la t ions  

- 
H 

- 

( t a b l e  I) 

i d e n t i t y  dyadic 

gain term which determines magnetic moment f o r  proport ional  
system 
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K* 

k 

- 
M 

N 

I1 

P 

T 

t 

t k 

V 

v 

4 

KB2 

7x3 

gain term f o r  proport ional  system with normalized angular momentum 
( o r b i t a l  period gauss2) 

magnetic moment 

gain term which determines magnetic moment f o r  on-off system 

gain term f o r  on-off system with normalized angular momentum 
( o r b i t a l  period gauss ) - l  

o r b i t a l  period 

s t rength  of dipole  representing the  ea r th '  s magnetic f i e l d  

spher ica l  coordinate systems described i n  the  appendix 

sampling i n t e r v a l  

applied torque 

ex te rna l  d i s turb ing  torque 

time 

Te normalized d is turb ing  torque, - 
Hm 

numerical values of normalized d is turb ing  torques used i n  the  

- 

ca lcu la t ions  ( t a b l e  I )  

time a t  sampling in t e rva l  k 

pos i t i ve  d e f i n i t e  reference funct ion,  (1/2)K * H 
- 

pos i t i ve  d e f i n i t e  reference fxnct ion obtained from normalized 
angular momentum, (1/2)g - h 

i n e r t i a l l y  f ixed  coordinate system 

angular frequency of t he  per iodic  port ions of t he  components of 
and ce 

increment a1 quant i ty  

root  of cha rac t e r i s t i c  equation f o r  s implif ied case 
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absolute r e a l  p a r t  of root  with minimum absolute r e a l  p a r t  

t o t a l  rms value of e r r o r  i n  ca lcu la t ion  of A q  due t o  

I AR I min 

momentum -whee 1 measurement noise at 

‘n 

TC 

rms value of measurement e r r o r  f o r  each momentum wheel 

momentum-wheel con t ro l  syitem time constant,  i n  o r b i t a l  periods 
(diagonal  elements i n  G )  

Sub s c r i p t  s 

I 

r 

* 

i n e r t i a l l y  f ixed  coordinate system 

ro ta t ing  coordinate system 

rectangular coordinate systems described i n  t h e  appendix 

Superscript  

dimensionless parameter used for simplif ied case 

Vector Notation 

vector 

dyadic 

(7 - (3  
(-1 x ( 3  
grad@ gradient of the  sca la r  with respect t o  M 

sgnxyz ( -1 

sca la r  or dot product of vectors  or dyadics ( e . g . ,  r e f .  7 )  

vector product of vectors  
- 

vector with u n i t  components determined by the  s ign of a 
component of t h e  indicated vector  times the  corresponding u n i t  
base vector  i n  t h e  qyz ax i s  system 
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ANALYSIS 

A magnetic system f o r  unloading stored momentum generates an on-board 
magnetic moment which couples with the e a r t h ' s  magnetic f i e l d  t o  produce a 
torque on t h e  vehicle  i n  some desired d i r e c t i o n .  Equations w i l l  be given 
f i r s t  f o r  a conventional system which measures values of t h e  magnetic f i e l d  
t o  determine t h e  magnetic moment (magnetometer system). Then the  equations 
w i l l  be given f o r  a system which determines the  magnetic moment by perturbing 
components of t h e  moment (adaptive system) and observing the  resu l t ing  changes 
i n  t h e  stored momentum. Both systems are  based on the  same performance c r i -  
t e r i a .  In  addition, equations are  given which represent both proportional and 
on-off magnetic moment control  and which a r e  determined from t h e  same control  
funct ion.  

The adaptive system t o  be described i s  more dependent on accurate 
measurements of momentum var ia t ions  together with associated system parameters 
than i s  the  magnetometer system. Hence, the  e f f e c t s  of several  system param- 
e t e r s  f o r  the  adaptive system w i l l  be invest igated.  These parameters include 
a f i r s t - o r d e r  representation of the primary a t t i t u d e  control  system. 
gain a t t i t u d e  control  system has been presupposed so t h a t  the frequencies 
associated with the  magnetic unloading system would be expected t o  be much 
lower than those f o r  the  a t t i t u d e  control  system. For the adaptive unloading 
system, however, the use of a perturbing t e s t  s igna l  introduces higher f r e -  
quency e f f e c t s  so t h a t  possible coupling with the  primary a t t i t u d e  cont ro l  
system should be considered. 

A high 

Magnetometer System 

A control  l a w  determines the r e l a t i o n  between the  stored angular momentum 
i n  the vehicle ,  the  e a r t h ' s  magnetic f i e l d ,  and the  applied magnetic moment. 
This moment determined by the  cont ro l  l a w  w i l l  be e i t h e r  proportional t o  o r  
depend only on the  sign of a vector function of these q u a n t i t i e s .  The equa- 
t i o n s  f o r  the  resu l t ing  momentum removal w i l l  be derived. The s t a b i l i t y  of 
the  system w i l l  then be shown through use of a Liapunov funct ion.  In addi- 
t i o n ,  a closed-form solut ion f o r  the  proport ional  system w i l l  be given f o r  a 
case with simplified assumptions f o r  the  v a r i a t i o n  of the magnetic f i e l d .  

Determination of magnetic moment. - The magnetic moment from the c o i l s  
i n t e r a c t s  with t h e  e a r t h ' s  magnetic f i e l d  t o  pro8uce a torque which tends t o  
r o t a t e  the  vehic le .  The react ion of the  a t t i t u d e  cont ro l  system causes desat-  
urat ion of the  momentum wheels. The c o i l s  a re  assumed t o  be al ined with 
respect t o  t h e  vehicle control  axes so t h a t  a magnetic moment component i s  
produced along each control  a x i s .  
torque can be applied i s  r e s t r i c t e d  by t h e  condition 

The a c t u a l  d i rec t ion  i n  which the  magnetic 

T , = M X B  
I 

t h a t  i s ,  the  torque can only be - applied i n  the  plane perpendicular t o  
regardless of the  d i rec t ion  of M .  

6 
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A primary high gain a t t i t u d e  cont ro l  system i s  assumed t o  be operating 
simultaneously t o  a l ine  the  vehicle continuously with some desired d i rec t ion  
while t he  momentum removal system i s  operating. Even though f o r  a l i nea r  
a t t i t u d e  cont ro l  system a constant ex terna l  torque w i l l  cause the  vehicle 
e r r o r  t o  increase a t  a constant angular ra te ,  t he  cont ro l  system must be 
designed so t h a t  t he  rate i s  very small i n  order t o  s a t i s f y  pointing accuracy 
requirements ( r e f .  8) . 
t h e  momentum wheel speed, a s igna l  based on momentum wheel speed only i s  
su f f i c i en t  f o r  t he  unloading system. 

Since t h i s  resu l t ing  a t t i t u d e  e r r o r  i s  proportional t o  

A desired d i rec t ion  of t he  applied magnetic torque would be opposite t o  

E, t he  desired torque i s  selected t o  be i n  the  oppo- 
t h a t  of the wheel angular momentum. Since the  applied torque must l i e  i n  the  
plane perpendicular t o  
s i t e  d i rec t ion  from t he  project ion of H 

- 
i n  t he  plane perpendicular t o  

or  

- KI - 

B 
T a  = 5 [(H X 

B2 - "'"I 
E) x B] ( 3 )  

- 
Moreover, it i s  des i rab le  t o  constrain M t o  the  plane perpendicular t o  B 
since a component of E p a r a l l e l  t o  does not contribute toward the  pro- 
duction of torque.  A comparison of equations (3 )  and (1) indicates  the  condi- 
t i o n s  are sat isf ied i f  

K 1  
B2 

M =  - ( % x  E) (4) 

Essent ia l ly  t h i s  form of cont ro l  l a w  has been used i n  a number of previous 
invest igat ions ( r e f s .  1 t o  5 ) .  A simplification which has been made i n  several  
of the c i t ed  references i s  t o  neglect the  var ia t ion  of the  l / B 2  term i n  equa- 
t i o n  ( 4 ) .  The magnitude of 
lar o r b i t  (po lar  o r b i t ) .  
have some e f f e c t  on performance, t he  addi t iona l  complication of the 1/B2 t e r m  
i s  usual ly  not needed. Thus, equation ( 4 )  s implif ies  t o  

can vary at most by a f ac to r  of 2 f o r  a c i rcu-  
While t h i s  maximum var ia t ion  could be expected t o  

E = K ( K  X E) ( 5 )  

Each component of i n  equation ( 3 )  can be expressed as 

M i  = K(HjBk - H k j  B ) (6) 

where the  i, j, and k components are  taken i n  cyc l ic  order .  These equations 
are continuously computed i n  the  vehicle t o  obtain the  proper currents  f o r  
each magnetic c o i l .  Th.e r e su l t i ng  applied torque i s  

7 



The previous equations have been f o r  cases with th ree  orthogonally 
mounted c o i l s .  I f  only two magnetic c o i l s  were used with the  same cont ro l  
l a w ,  t h e  magnetic moment would be constrained t o  l i e  - i n  a plane which would 
not necessar i ly  contain t h e  desired d i r ec t ion  of M .  
reduced performance of a two-coil  system i s  use fu l  from t h e  r e l i a b i l i t y  stand- 
poin t ,  however. If one c o i l  of t he  t h r e e - c o i l  system f a i l e d ,  t he  remaining 
system would s t i l l  operate s a t i s f a c t o r i l y  provided t h e  wheels and c o i l s  had 
suf f i c  i e n t  l y  large capaci ty  . 

A knowledge of t h e  

The implementation of t h e  th ree -co i l  system can be s implif ied i f  an on- 
off current  i s  applied t o  the  c o i l s  i n  response t o  t h e  s ign of a s igna l  r a the r  
than a current  which i s  proport ional  t o  t h e  s igna l .  For t h i s  on-off case, 
equation ( 5 )  i s  modified t o  be 

Fi = N sgnwz(H x E) 

where 
mined by t h e  sign of t he  components of (-) along the  xyz  axes.  Note t h a t  
t he  d i r ec t ion  of w i l l  be affected by t h e  o r i en ta t ion  of t he  xyz axes.  
For the  on-off case i n  component form, equation (8) becomes 

sgnwz(-) i s  a vector  with uni t  components whose d i r ec t ions  a re  de t e r -  

M i  = N sgn(H j k  B - HkBj) (9) 

The r e su l t i ng  applied torque i s  

The corgutation could be s implif ied f u r t h e r  by using only the  signs of 
t h e  E and B components. However, t h i s  s impl i f ica t ion  would be expected t o  
be usefu l  when t h e  magnetic unloading i s  needed only occasional ly .  
selected dead zones of these components a re  exceeded, t he  d i rec t ion  of t he  
r e su l t i ng  applied moment can be the  reverse of  t h a t  given by equation ( 9 ) .  

When 

Equations of motion.- Changes i n  con t ro l  wheel angular momentum can be 
d i r e c t l y  r e l a t ed  t o  torque act ing on the  vehicle  f o r  an i n e r t i a l l y  or iented 
vehicle  with a high gain a t t i t u d e  cont ro l  system. 

- -  - 
H = Ta + Te 

After t he  subs t i t u t ion  of equation (1) 

ii = ii x ii + re 
The subs t i tu t ion  of equation ( 5 )  o r  (8)  in to  equation (11) y ie lds  

f o r  t he  proport ional  system o r  
r 1 

H = N sgn ( E x  E) x B + Y e  1 xYz J - 

f o r  the  on-off system. 
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Equation (12) 

where the  elements 

can be arranged i n t o  t h e  form 
- 

H = K z - K + ! ? e  
- 

of C are 

A block diagram of the  on-off magnetometer system i s  shown i n  f igure  1( a ) .  

S t a b i l i t y  of t he  system.- System s t a b i l i t y  can be evaluated through the  
select ion of a su i tab le  pos i t ive  d e f i n i t e  (Liapunov) funct ion ( r e f .  9). 
na tu ra l  se lec t ion  i s  one which i s  proport ional  t o  t h e  square of t he  angular 
momentum of the  i n e r t i a  wheels, 

A 

- 
V = (1/2)K * H 

Dif fe ren t ia t ing  ( s t a b i l i t y  i s  determined f r o m  an examination of 
respect t o  time gives 

?) w i t h  

+ = H . K  
For t he  proport ional  case,  t h e  subs t i tu t ion  of equation (12) with 
y i e lds  

Fe = 0 

Equation (17) can be rearranged so t h a t  

Equation (18) i s  seen t o  be negative semidefini te .  
equilibrium points  f o r  other  than F = 0 must be invest igated.  W$en V = 0 
for values of unequal t o  zero (B X = 0 ) ,  then = 0, but # 0 since 
the  magnetic f i e l d ,  E, i s  a time varying quant i ty .  cannot remain 
perpendicular t o  g ,  and therefore  I? cannot remain equal t o  zero f o r  values 
of ?? other than = 0 .  Thus, t he  o r ig in  i s  the  only equilibrium point  and 
it i s  asymptotically s t a b l e .  

Hence, the  p o s s i b i l i t y  of 

Hence, 

For t he  on-off system, the  subs t i t u t ion  of equation (13) with Fe = 0 
gives 

I 
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Equation (19) can be rearranged t o  give 

Asymptotic s t a b i l i t y  f o r  t h e  on-off system i s  a l s o  assured since,  although V 
i s  again negative semidefinite,  E = 0 i s  t h e  only possible  equilibrium point 
as long as B i s  time varying. 

Unfortunately, no information concerning the  degree of s:ability i s  
obtained f o r  e i t h e r  t h e  proport ional  or on-off system since 
points  i n  t h e  phase space besides t h e  o r ig in .  Furthermore, maximum var ia t ions  
due t o  dis turbing torques cannot be estimated through use of t h i s  V function. 

V = 0 at  other  

Simplified ana lys i s .  - A closed-form solut ion f o r  t he  proportional cont ro l  
can be obtained when a s implif icat ion i s  made of t h e  representation of the  
e a r t h ' s  magnetic f i e l d .  This pa r t  of t he  analysis  w i l l  be usefu l  pr inc ipa l ly  
f o r  obtaining t rends  concerning the  e f f ec t  of gain on degree of s t a b i l i t y .  
The e a r t h ' s  magnetic pole i s  assumed t o  be at the  geographic pole,  t he  m a g -  
ne t i c  f i e l d  i s  represented by t h a t  obtained from a simple dipole,  and the  
vehicle  i s  assumed t o  be i n  a c i r cu la r  o r b i t .  With these assumptions, the  
component of t he  e a r t h ' s  magnetic f i e l d  i n  one d i rec t ion  i s  constant with 
respect t o  the  i n e r t i a l l y  f ixed vehic le .  A s  shown i n  the  appendix, the  other 
two components of t he  e a r t h ' s  magnetic f i e l d  can be approximately represented 
by a constant magnitude vector ro ta t ing  at a rate equal t o  twice the  o r b i t a l  
ra te .  With these assumJtions, a set  of axes ro t a t ing  at a constant r a t e  can 
be selected i n  which B i s  constant .  Hence, t he  analysis  i s  reduced t o  t h a t  
of a constant coef f ic ien t  l i nea r  system with t h i s  reference frame. 

The transformation of a vector from t h e  f ixed s e t  of axes t o  the  
ro t a t ing  set can be expressed as 

Dyadic terms i n  the  ro ta t ing  system can be expressed by means of the  t r ans -  
formation dyadic from the  i n e r t i a l l y  f ixed term as 

(= ) r  = q t )  * (=)I - Z T ( t )  
Thus, i n  t he  ro t a t ing  system, the  e a r t h ' s  magnetic f i e l d  vector transforms t o  

- 
B, = K ( t )  

With the  dis t rubing torque equal t o  zero, equation (12)  can be expressed i n  
the  ro ta t ing  coordinate system as 

Equation (24) can be solved i n  closed form. The equation i s  f irst  rearranged 
t o  the  form 
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For 
t h a t  the  
ro ta t ing  

convenience, an x3, y3, z3 ro ta t ing  coordinate system i s  selected so 
i n e r t i a l l y  f ixed component of B l i e s  along t h e  x ax is  and the  
coiiiponent of t h e  magnetic f i e l d ,  B,, l i e s  along the z a x i s .  For 

these or ien ta t ions ,  the  elements of Cr have the  following form: 

The elements of- Cr 
components of B are  constant i n  the ro ta t ing  reference frame. Hence, equa- 
t i o n  ( 2 5 )  can be solved i n  closed form, and the following t h i r d  degree 
c h a r a c t e r i s t i c  equation i s  obtained: 

form a 3x3 matrix with constant coef f ic ien ts  since the 

A3 + 2KB2A2 + (K2B4 + Yg3)A + mr2Yz3 = 0 

A convenient dimensionless form f o r  t h i s  equation i s  

A*3 + 2K*A*2 

where 

For the  on-off case, a s i m i l a r  s implif icat ion cannot be made since the 
or ien ta t ion  of the i n e r t i a l  x y z  
term i n  eq .  ( 1 3 ) ) .  

system must s t i l l  be considered ( sgnyyz 

The solut ion f o r  a p a r t i c u l a r  or ien ta t ion  of a two-coil system can a l so  
be obtained. This or ien ta t ion  i s  such t h p t  magnetic moments a re  applied i n  
the  yz plane only.  Three-axis magnetometer information i s  s t i l l  used. 
After expressing equation ( 2 4 )  i n  component form with the  Mx component s e t  
equal t o  zero, the following third-order  c h a r a c t e r i s t i c  equation i s  obtained 
f o r  the  two - c o i l  system: 

A3 + K ( B 2  - Br2)A2 + (K2B4 - 8 B 2 B r 2  + yx3)A 2 + K&Br2 = 0 
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In  dimensionless form, equation (28) becomes: 

(29) A*3 + (2 - 9) K*A.X2 +- [K*2 (1 - g) + 11 A* + K* Br2 - - - 
B2 B2 B2 

Adaptive System 

A second method of con t ro l  involves an i nd i r ec t  evaluat ion of equa- 
t i o n  ( 5 )  o r  (8) ;  t h a t  i s ,  a measurement of t he  e a r t h ' s  magnetic f i e l d  i s  not 
needed. In  t h i s  approach, the magnetic moment i s  perturbed, and from t h e  
r e su l t i ng  va r i a t ions  i n  a selected sca la r  reference funct ion of 
of i s  obtained which i s  the  same a s  t h a t  which would be calculated through 
use of the  previous magnetometer system. The r e su l t i ng  change i n  angular 
momentum i s  t h e  same as t h a t  f o r  t h e  magnetometer system except f o r  t he  
e f f e c t s  of t he  magnetic moment t e s t  s igna l  per turba t ions .  Equations t o  show 
t h e  e f f e c t s  of o ther  system parameters w i l l  a l so  be given. While the  most 
u se fu l  form of t h i s  system i s  f e l t  t o  be a sampled on-off form, a continuous 
form w i l l  be shown f i rs t  i n  order t o  ind ica te  t h a t  t h e  previous cont ro l  l a w  i s  
being implemented. 

E, t he  value 

Continuous adaptive system.- __ To obtain a system with performance equiva- 
l e n t  t o  t h a t  of t h e  magnetometer system, - a means f o r  evaluating the  quantity 

X without a d i r e c t  measurement of B must be found. This can be done 
by f i rs t  wr i t ing  the  previously used t i m e  der iva t ive  of a s ca l a r  funct ion of 
momentum i n  terms of E through use of equations (16) and (11). 

- 
? = ( B X K )  - E + F e  - H  (30)  

grad3 = % X E (31) 

- 
If the  p a r t i a l  der iva t ive  of V i s  taken with respect  t o  M, 

For a proport ional  system, the  desired value of M can be obtained i n  terms 
of t he  p a r t i a l  der iva t ive  from a comparison of equations (31) and ( 5 ) .  
r e su l t i ng  equation i s  

The 

= -K gradm (32)  

Thus varying one component o f .  
change i n  ( a  funct ion of E and R) gives the  desired 2 according t o  equa- 
t i o n  ( 3 2 ) .  

at a time, while computing the  r e su l t i ng  

A comparison of equations (31) and (8)  shows t h a t  t he  desired value of 
i n  terms of t he  p a r t i a l  der ivat ive f o r  t he  system with on-off magnetic 

components appears as : 
.- 
M = -N sgn W Z  (gradz V) (33) 

The r e su l t i ng  motion i s  obtained by the  subs t i tu t ion  of equation (32)  o r  (33) 
i n t o  equation (11). 



Sampled adaptive system. - The adaptive system i s  more readi ly  implemented 
i n  a d i s c r e t e  form. A block diagram of t h e  d iscre te  adaptive system f o r  the  
on-off case i s  shown i n  f igure  l ( b ) .  
n e t i c  c o i l  currents ,  two sampling i n t e r v a l s  a re  required t o  provide a d i s c r e t e  
t e s t  s igna l  f o r  the e f f e c t  of one magnetic c o i l .  For t h e  f i r s t  sampled i n t e r -  
v a l ,  a l l  components are  a t  a previously determined l e v e l .  For the  second 
in te rva l ,  the  current f o r  the  c o i l  being t e s t e d  i s  varied by a preselected 
amount. A comparison of the  change i n  V over the  sampling i n t e r v a l  a f t e r  
the  var ia t ion  i n  c o i l  current with t h a t  over t h e  sampling i n t e r v a l  before the  
var ia t ion  determines the new value f o r  the component of magnetic moment. The 
d iscre te  equivalent of equation (32)  f o r  one component of M f o r  t h e  propor- 
t i o n a l  case i s  

S tar t ing  with a given s e t  of th ree  mag- 

o r ,  i n  terms of sampling ins tan ts ,  

The time, t k ,  i s  the sampling ins tan t  at which t h e  c o i l  current i s  varied a 
preselected amount. This computed component of magnetic moment i s  then 
applied f o r  the next f i v e  sampling i n t e r v a l s .  The other two components a re  
s imilar ly  t e s t e d  i n  sequence with two sampling i n t e r v a l s  required f o r  each 
component. Thus a t o t a l  of s i x  sampling in te rva ls  i s  needed f o r  each cycle .  
The cycle i s  then repeated. A n  a l t e r n a t e  - form f o r  equation (34)  which i s  
equivalent f o r  s m a l l  changes i n  H,  and somewhat e a s i e r  t o  implement, i s  

For the  on-off case, the same switching function i s  used, and only the 
proper sign of the  magnetic moment needs t o  be determined. The equation 
evaluated f o r  the on-off case i s  a modification of equation (34)  

Since s u f f i c i e n t l y  accurate measurements of changes i n  angular momentum during 
the  sampling i n t e r v a l s  w i l l  be a problem, c o i l  current changes should be as 
large as possible but should not d i s turb  t h e  t racking a b i l i t y  of t h e  momentum- 
wheel cont ro l  loop. These conf l ic t ing  requirements suggest t h a t  a good com- 
promise would be t o  reduce t h e  current of the  c o i l  being t e s t e d  t o  zero f o r  
the  second sampling i n t e r v a l  t o  obtain the  la rges t  var ia t ion  i n  wheel speed 
possible .  With t h i s  select ion,  equation (36) becomes 



I 
, .. , , . , . .... . . . ._. ~ 

l i m  
T& 

o r  

dz 

A e) 

In 
angular 
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order t o  avoid continuously supplying power t o  t h e  c o i l s  when the  
momentum i s  reduced, a dead zone f o r  t h e  calculat ion can be 
However, the  magnetic moment would s t i l l  need t o  be applied f o r  one 

A2V 

The Liapunov function used t o  show s t a b i l i t y  f o r  the  continuous case can 
not be used f o r  indicat ing s t a b i l i t y  i n  the  sampled case.  Consider the  on- 
off, system. For a sampled magnetic moment, the  equivalent of equation (20) i s  

- 
If average values of 
equation (39) becomes 

B ( t )  and H ( t )  are  taken over the sampling i n t e r v a l ,  

Since the terms i n  t h e  f i r s t  product are  not evaluated a t  t h e  same ins tan t  of 
time as the  second product, the  r e s u l t  i s  not necessar i ly  posi t ive o r  zero; 
hence, V(tk+l) - V(tk) i s  not negative semidefinite.  ~ n .  addi t ional  delay 
e f f e c t  due t o  sampling i s  a l so  introduced since the  value of one component of 
magnetic moment i s  held while the  other two components are  being t e s t e d .  

The e f f e c t  of wheel-speed measurement e r r o r s  on system performance w i l l  
a l so  be invest igated.  Since the calculat ion of A2V requires the measurement 
of incremental changes i n  wheel speed, e f f e c t s  of wheel-speed inaccuracies are  
more important f o r  t h e  adaptive than for t h e  magnetometer system. The meas- 
ured value of one component of momentum cons is t s  of the  ac tua l  value H i  p lus  
a smal.lmeasurement e r r o r  Hni. I f  the  second-order term of Hni i s  neg- 
lected,  the  squaring operation f o r  the  determination of V with measurement 
noise present i s  approximated by 
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2 
(1/2)(Hi + Hni)2 (1/2)Hi + HiHni 

The measurement e r r o r ,  HniJ f o r  each momentum wheel i s  assumed t o  have a 
gaussian probabi l i ty  d i s t r ibu t ion  with a given rms value, 0,. 
e r ro r s  a t  successive sampling in s t an t s  and the  e r r o r s  f o r  each momentum wheel 
are assumed t o  be uncorrelated with each o ther .  The port ion of t o t a l  r m s  
e r r o r  which r e s u l t s  from t h e  contr ibut ion t o  A2V from one momentum wheel f o r  
t he  ca lcu la t ion  indicated i n  equation (37) i s  obtained by means of t he  approx- 
imation shown i n  equation (41). In addi t ion,  the changes i n  each H i  f o r  the 
three sampling in t e rva l s  i n  which i s  computed are assumed t o  be s m a l l  i n  
comparison with the  t o t a l  values .  H i  ( a t  the middle 
sampling in t e rva l )  w i l l  be used t o  obtain the  e f f e c t  of measurement e r r o r  i n  
the product HiHni. 
e r r o r  f o r  one momentum wheel i s  

The measurement 

A2V 
Only an average value of 

The resu l t ing  equation f o r  t he  e f f e c t  of measurement 

The t o t a l  rms e r ro r  i n  the  calculat ion of A2V which r e s u l t s  from the  three  
momentum wheels i s  

o r  

0% = 20n.J3v 

+ Hy2 + Hz2)]1’2 

Hence, i n  the  determination of 
e r ro r s ,  each of whose r m s  value i s  
the ca lcu la t ion  of  A2V. 

M i  ( e q .  ( 3 8 ) ) ,  the  momentum wheel measurement 
ot due t o  On, r e s u l t  i n  an r m s  e r ro r  of 

Control -_  system ~ dynamics.- A n  addi t iona l  e f f ec t  t o  be considered f o r  t he  
adaptive system i s  the momentum wheel cont ro l  system dynamics, as the adaptive 
system i s  very dependent on momentum wheel speed changes. Since a vehicle 
high gain cont ro l  system i s  assumed, the  wheel cont ro l  system dynamics can be 
represented by a simple time constant,  and in t e rax i s  coupling w i l l  be 
neglected.  Equation (11) i s  modified t o  .. 

E + E  = Fi X E + (43) 
- 

where 
time constants f o r  each axis .  

G contains only diagonal elements which represent t he  cont ro l  system 

For t he  case with magnetic moment sampled, t h e  resu l t ing  angular momentum 
a t  each sampling i n t e r v a l  can be obtained by the  stepwise solut ion of equa- 
t i o n  (43 )  ketween sampling in t e rva l s .  A component of M and resu l t ing  compo- 
nents of % change discontinuously at each sampling in t e rva l .  
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Normalized Form of t h e  Parameters 

For the  calculated r e s u l t s ,  it w i l l  be convenient t o  use a normalized 
form of the wheel angular momentum such t h a t  t h e  maximum allowable momentum i s  
normalized t o  u n i t y .  The normalized angular momentum i s  designated by 

where Hm i s  t h e  maximum design angular momentum of one of the  wheels. 

In  addition, it w i l l  be convenient - t o  normalize time t o  an o r b i t a l  period 
since the  assumed disturbances and B var ia t ions  i n  t h e  subsequent calcula-  
t i o n s  a re  periodic with respect t o  t h i s  time i n t e r v a l .  The corresponding form 
of the dis turbing torque i s  

- The dimension of the  normalized torque i s  (time)-’; f o r  t h i s  case, the  uni t  of 
te i s  ( o r b i t a l  periods)-’. 

The gain terms, K ( e q .  (12) f o r  the  proportional system) and N ( e q .  (13)  
f o r  the  on-off system), contain the conversion u n i t s  f o r  magnetic moment. 
the  normalized form, K remains the  same while N i s  modified by the  maximum 
angular momentum 

For 

k = K  

It i s  convenient t o  l i s t  +,hese gains i n  terms of the e a r t h ’ s  magnetic f i e l d  
u n i t s  and the time u n i t  se lec ted .  Thus, f o r  the  subsequent calculat ions,  the 
u n i t s  of k are  ( o r b i t a l  period gauss2)- l  and t h e  u n i t s  of n a re  ( o r b i t a l  
period gauss)-’. 

RESULTS AND DISCUSSION 

Calculated var ia t ions  i n  stored momentum f o r  the  magnetometer and 
adaptive magnetic momentum-unloading systems described i n  the  a n a l y s i s  section 
w i l l  be shown. The calculat ions were made with a d i g i t a l  computer by numer- 
i c a l  integrat ion of the  appropriate equations of motion. Results f o r  both 
proportional and on-off applied magnetic moments w i l l  be compared. A s  was 
previously noted, the on-off case i s  more of i n t e r e s t  f o r  the adaptive system 
since the on-off case w i l l  t o l e r a t e  l e s s  s t r ingent  wheel-speed accuracy 
requirements. The magnetometer and adaptive systems a r e  equivalent so long as 
sampling, magnetic -moment t e s t  s ignals  , and system imperfections a re  neglected 
f o r  the adaptive system. The r e s u l t s  shown i n i t i a l l y  ( f i g s .  2 t o  8) apply both 
t o  the  magnetometer and adaptive systems since the  applied magnetic moment i s  
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the  same f o r  both systems as described i n  the  magnetometer and continuous 
adaptive portions of the  analysis  sect ion.  The normalized form of equa- 
t i o n  (12) w a s  used f o r  calculat ing the  time h i s t o r i e s  of angular momentum f o r  
the proportional system, and equation (13) f o r  the  on-off system. The calcu- 
l a t i o n s  i n  f igure  4 p e r t a i n  t o  t h e  simplified representation of the  magnetic 
f i e l d  described i n  the  analysis  section and were obtained from equations (27) 
and ( 2 9 ) .  
angular momentum measurement e r r o r s ,  sampling i n t e r v a l s ,  and a t t i t u d e  cont ro l  
system time constants f o r  t h e  adaptive system. Effec ts  of these parameters on 
t h e  applied magnetic moment were described i n  the  sampled adaptive system and 
control  system dynamics portions of t h e  analysis  sec t ion .  The resu l t ing  v a r i -  
a t ions  i n  were calculated by the  subs t i tu t ion  of the  appropriate magnetic 
moment i n t o  the  normalized form of equation ( 4 3 ) .  

The remaining r e s u l t s  ( f i g s .  9 t o  12) indicate  e f f e c t s  of wheel 

h 

Only var ia t ions  i n  wheel speed angular momentum are  considered since a 
high gain a t t i t u d e  control  system i s  assumed which keeps the  vehicle contin- 
uously pointed i n  t h e  desired i n e r t i a l  d i rec t ion  so tha t  vehicle angular 
momentum i s  s m a l l .  During the r e l a t i v e l y  short  time f o r  a t t i t u d e  control  sys- 
tem t r a n s i e n t s ,  the  unloading system would not necessar i ly  apply torque i n  the  
desired d i r e c t i o n .  However, the  unloading system could be turned off while 
a t t i t u d e  e r r o r  and/or e r r o r  r a t e  exceed a c e r t a i n  value. 
ing system were l e f t  on, since the  magnitude of the  unloading torques i s  s m a l l  
i n  comparison with t h e  momentum wheel torques,  the e f f e c t  on the a t t i t u d e  
cont ro l  system motions would be s m a l l .  

Even i f  the unload- 

For an i n e r t i a l l y  oriented vehicle ,  the predominant var ia t ion  i n  the 
e a r t h ' s  magnetic f i e l d  r e l a t i v e  t o  the vehicle i s  a t  a frequency of twice the  
o r b i t a l  frequency f o r  a c i r c u l a r  o r b i t  ( r e f s .  1 and 1 0 ) .  This var ia t ion  i s  
a l so  t y p i c a l  f o r  the  pr inc ipa l  ex terna l  dis turbing torques (grav i ty)  which a c t  
on the  vehic le .  Thus, the  form t o  be used i n  the  calculat ions f o r  the  mag- 
ne t ic  f i e l d  and dis turbing torques i s  a constant term plus  a sinusoidal term 
whose frequency i s  twice the o r b i t a l  frequency. More complete descr ipt ions of 
expected var ia t ions  i n  the  magnetic - f i e l d  are  given i n  references 1 and 10. 
The s e t s  of numerical values of 
given i n  t a b l e  I and indicated w i t h  t h e  appropriate f i g u r e s .  The var ia t ions  
i n  the  e a r t h ' s  magnetic f i e l d  parameters represent a range from t h a t  assumed 
by the simplified analysis  of the previous section t o  t h a t  more representative 
of the e a r t h ' s  ma.gnetic f i e l d  f o r  a 35' inclined o r b i t  f o r  an i n e r t i a l l y  f ixed 
vehicle .  The two s e t s  of ex terna l  torque values represent one case i n  which 
the  torque i s  a l ined with the  magnetic f i e l d  and another i n  which the 
or ien ta t ion  i s  a r b i t r a r y  with respect t o  t h e  f i e l d .  

B and Ce used i n  the  subsequent r e s u l t s  a re  

Transient Responses of Proportional and On-Off Systems 

Typical t r a n s i e n t  responses, which r e s u l t  from i n i t i a l  pointing e r r o r s  of 
wheel angular momentum f o r  the proportional and on-off systems with and with- 
out dis turbing torques,  a re  given i n  f igures  2 and 3 .  Shown a r e  the  wheel 
angular momentum f o r  each control  a x i s  and the  sca la r  reference function of 
the angular momenta. The i n i t i a l  angular momentum and dis turbing torques 
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selected are out of phase with the magnetic f i e l d  vector .  The gains  of each 
system have be,n adjusted t o  give a s i m i l a r  s e t t l i n g  time f o r  the  magnitude of 
the  i n i t i a l  angular momentum used. On the  average, the  l i n e a r  system produces 
an exponential-type decay, whereas the  on-off system produces a l inear- type 
decay. The time var ia t ion  of the  e a r t h ' s  magnetic f i e l d  r e s u l t s  i n  appreci- 
able o s c i l l a t i o n s  about t h i s  average motion. 

Effect  of Magnetic Moment Gain on Transient Response 

The e f f e c t  of magnetic moment gain w i l l  f i rs t  be shown f o r  t h e  simplified 
case described i n  the analysis  section f o r  which t rends can most c l e a r l y  be 
seen. The e f f e c t  of gain with a more r e a l i s t i c  var ia t ion  of and with 
on-off magnetic moments used w i l l  then be indicated.  

A closed-form solut ion can be obtained f o r  t h e  proportional case i n  which 
the  vector i s  constant i n  magnitude and r o t a t e s  a t  a constant angular r a t e  
r e l a t i v e  t o  t h e  vehicle ( see  Analysis).  
response can be obtained by an examination of the  c h a r a c t e r i s t i c  roots  
( e q .  (27)  f o r  the  t h r e e - c o i l  system or  (29) f o r  a p a r t i c u l a r  or ien ta t ion  of a 
two-coil system). Typical var ia t ions  of t h e  roots  f o r  e i t h e r  system with the  

An indicat ion of the  t r a n s i e n t  

magnetic moment gain are  shown i n  
sketch ( a )  f o r  the system f o r  s m a l l  and 
moderate values of Br /B .  The d i rec-  
t i o n  of increasing gain i s  shown by the  
arrows. The curve i s  not a conven- 
t i o n a l  root locus form since the  gain 
term cannot be factored from the  r e s t  

indicated on the  sketch, the r e a l  root 
increases t o  a maximum absolute value 
and then decreases toward zero f o r  very 

Sketch ( a )  high ga in .  When t h i s  maximum occurs, 
t h e  r e a l  p a r t s  of the  complex roots  are  

4 - Complex plane of the  expression i n  equation (27). A s  

always more negative than the  r e a l  r o o t .  Thus, a gain can be selected f o r  
which the  root with the  minimum absolute r e a l  p a r t  has a maximum absolute 
value.  This behavior i s  a consequence of t h e  r e s t r i c t i o n  on the d i rec t ion  of 
appl icat ion of the  applied torque. I f  t h e  gain i s  too low, then i n i t i a l  
e r r o r s  a r e  not corrected very fast  as would be expected. I f  the gain i s  
increased, the response f o r  i n i t i a l  angular momentum i n  d-irections approxi- 
mately perpendicular t o  the magnetic f i e l d  i s  f a s t e r .  Hence, the angular 
momentum vector tends t o  or ien t  more rapidly toward the  ro ta t ing  and 
becomes closer  t o  i t .  I f  the  gain i s  too high, the  angular momentum vector 
becomes al ined very closely t o  the and t h i s  remaining portion of the angu- 
l a r  momentum i s  removed very slowly. This behavior i s  a l so  indicated by the 
f a c t  t h a t  the eigen-vector associated with the  minimum root - i s  approximately 
i n  the d i rec t ion  of and it becomes more p a r a l l e l  with B as the gain i s  
increased. Thus even f o r  t h i s  case with symmetry of the control  system param- 
e t e r s  about a l l  axes, the  three  c h a r a c t e r i s t i c  roots  a re  not a l l  equal because 
of the  r e s t r i c t i o n  on the d i rec t ion  of the  applied. torque. Hence, caution 
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should be used i n  including magnetic torque e f f e c t s  i n  the  analysis  of a 
s ingle  -axis control  system since an "average" root applicable t o  a p a r t i c u l a r  
i n e r t i a l l y  fixed d i rec t ion  i s  d i f f i c u l t  t o  define . 

- 
For both two- and t h r e e - c o i l  systems i n  which almost t h e  e n t i r e  B 

vector r o t a t e s  with respect t o  the  vehicle,  (Br /B)  3 1, a l l  roots  become r e a l  
when the gain becomes s u f f i c i e n t l y  high, as shown i n  sketch ( b ) .  
at which the  two complex roots  become r e a l ,  the  s ingle  r e a l  root i s  always 
more negative so t h a t  ( A R * ~ ~ ~ ~ - ~ ~ ~  
t h e  sketch. 

For the  gain 

always occurs at t h e  point indicated on 

The var ia t ion  of t h e  minimum roots  
with Br/B for the  two- and t h r e e - c o i l  
cases i s  shown i n  f igure  4 .  The corre-  
sponding gains a re  a l so  shown. A given 
value of gain f o r  the two-coil  system 
represents only two-thirds of the  m a g -  
n e t i c  moment t h a t  would be applied by 
the  three - c o i l  system. The discontinu- p,one 
i t i e s  i n  the slope of the curves near 
Br/B = 0.9 occur because of t h e  change 
i n  form of the roots  a t  ( A R * ( ~ ~ ~ - ~ ~ ~  
shown i n  the previous two sketches.  
The two-coil system r e s u l t s  i n  a la rger  
value of the  parameter (A,*( min-max f o r  portions of the  Br/B range, 
although considerably higher gain l e v e l s  are  required.  However, the control  
l a w  selected does not necessar i ly  optimize the  minimum root parameter shown i n  
f igure  4 .  The minimum root parameter could be improved by a modification of 
the  control  l a w s  i f  the  knowledge about the  magnetic f i e l d  var ia t ion  i s  
improved. F i r s t  the d i rec t ion  of ro ta t ion  of the  B vector would be measured. 
Then a weighting f a c t o r  would be used t o  give t h e  component of momentum per-  
pendicular t o  the r o t a t i o n  vector more emphasis than the  component of 
momentum p a r a l l e l  with the  r o t a t i o n .  The system would then operate as 
before with t h i s  weighted wheel-momentum vector i n  place of the ac tua l  momen- 
t u m  vector .  However, the increase i n  performance would not be worth the added 
complexity, i n  general .  

Sketch ( b )  

- 

The e f f e c t  of gain var ia t ion  on the  c h a r a c t e r i s t i c  roots  f o r  the  
simplified case has previously been examined. Some t y p i c a l  time h i s t o r i e s  
w i l l  now be shown so t h a t  the  e f f e c t  of gain f o r  more r e a l i s t i c  cases can be 
determined. The i n i t i a l  angular momentum and dis turbing torque selected w i l l  
be a l ined with the  d i rec t ion  of E, since these conditions represent the  most 
d i f f i c u l t  s i tua t ion  t o  cont ro l .  An example t r a n s i e n t  t o  show the  e f f e c t  of 
gain i s  given i n  f igure  5 .  The e f f e c t  of gain f o r  a constant magnitude of B 
( t h e  assumption made f o r  the simplified analysis)  i s  shown i n  f igures  5(a) and 
5( c )  . The lower gain case ( f i g .  5( a ) )  i s  t h a t  which corresponds t o  the m i n i -  
mum root shown i n  the  previous f igure  and r e s u l t s  ip the  b e t t e r  t rans ien t  
response. The e f f e c t  of varying the magnitude of B by +-20 percent i s  shown 
i n  f igures  5(b)  and 5 ( d ) .  The same e f f e c t  of gain on t r a n s i e n t  response a l so  
occurs. 

- 



The performance of Lhe on-off system f o r  two magnetic moment l e v e l s  and 
f o r  t he  same values of B and in i t ia l  angular momentum used f o r  t h e  previous 
proport ional  case are shown i n  f igure  6 .  
t h a t  about t he  same average magnetic moment would be obtained during t h e  
t r ans i en t  as w a s  obtained f o r  t h e  previous proport ional  case.  
occurs, i n  t h a t  performance de te r io ra t e s  f o r  t he  la rger  ga in .  

The two l eve l s  were selected so 

The same t rend  

Effec ts  of a d is turb ing  torque i n  t h e  d i r ec t ion  of a re  shown i n  
f igu res  7 and 8 f o r  t he  proport ional  and on-off cases,  respect ively.  
presence of a per iodic  dis turbing torque, t h e  motions reach a s teady-state  
o s c i l l a t i o n ,  whose period i s  the  same as t h a t  of t he  dis turbing torque and 
magnetic f i e l d .  Since the  d i rec t ion  of the torque selected i s  p a r a l l e l  with 
t h a t  of t he  e a r t h ' s  magnetic f i e l d ,  t he  mode which corresponds t o  t h e  minimum 
root previously discussed i s  the  one predominately exc i ted .  Again, poorer 
performance i s  obtained with the  la rger  gain cases .  

I n  t h e  

It should be mentioned again t h a t  t he  previous examples i n  f igu res  5 t o  
8 are  spec ia l  cases of i n i t i a l  conditions and dis turbing torques a l ined  with 
E, f o r  which the  r e su l t i ng  t rends  with gain a re  d i f f e ren t  from those usual ly  
expected. For other  i n i t i a l  conditions and d is turb ing  torques,  t he  higher 
gains w i l l  tend t o  give b e t t e r  performance. However, consideration should 
a l s o  be given t o  these cases f o r  which the  performance i s  not  so good. One 
consequence of t h i s  l imi t a t ion  on t r ans i en t  response i s  t h a t  a la rger  s i z e  of 
wheels f o r  momentum storage would be needed if t h e  predominant dis turbing 
torques tend t o  be i n  the  d i rec t ion  of t he  magnetic f i e l d  vector .  

The f a c t  t h a t  t he  t rends shown i n  f igu res  6 through 8 are  the  same as 
those i l l u s t r a t e d  i n  f igu re  5 lends confidence t o  t he  judgment t h a t  t h e  gains  
f o r  t he  r e a l  s i t u a t i o n  should be selected on t h e  same bas i s  as  those f o r  t he  
s implif ied case; t h a t  i s ,  by se lec t ing  gains which give the  f a s t e s t  response 
from i n i t i a l  conditions and dis turbing torques with t y p i c a l  magnitudes and 
with d i r ec t ions  p a r a l l e l  with the  magnetic f i e l d ,  t he  bes t  "worst case" per -  
formance i s  obtained. This determination i s  similar t o  t he  determination of 
the  I 'R* I min -max r o o t  f o r  the  simplified case .  

The problem with the  high gain can a l so  be reduced by the  se lec t ion  of a 
su i tab ly  sized dead zone f o r  t he  cont ro l  func t ion .  The dead zone i s  pa r t i cu -  
l a r l y  needed f o r  t he  on-off cont ro l  since the  "ef fec t ive  gain" of t he  on-off 
cont ro l  becomes large f o r  s m a l l  values of the  cont ro l  funct ion.  

Effect  of Control System Parameters. On Adaptive System 

The previous r e s u l t s  have been va l id  f o r  both t h e  magnetometer and 
adaptive systems, since t h e i r  equivalence w a s  shown i n  the analysis  sect ion 
f o r  cases i n  which no system imperfections were considered. Ef fec ts  of 
imperfections of t h e  adaptive system w i l l  now be invest igated.  The a t t i t u d e  
cont ro l  system i s  s t i l l  assumed t o  maintain the  vehicle  pointing accuracy 
within some selected requirement. Only t h e  on-off adaptive system w i l l  be 
considered s ince,  i n  addi t ion t o  being simpler than the  proport ional  system, 
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it u t i l i z e s  a la rger  t e s t  s igna l  and, hence, has b e t t e r  cha rac t e r i s t i c s  i n  the  
presence of wheel-speed measurement e r r o r s .  The cont ro l  system parameters t o  
be invest igated a re  cont ro l  funct ion dead zone, sampling in t e rva l ,  momentum 
wheel-speed measurement e r ro r s ,  and a t t i t u d e  cont ro l  system time constant .  

Dead zone.- A dead zone of t he  cont ro l  function (described i n  the 
analysis  sec t ion)  i s  usefu l  pa r t i cu la r ly  f o r  an on-off system i n  order t o  con- 
serve c o i l  current  when t h e  wheel angular momentum i s  s m a l l ,  or when it cannot 
be reduced very eyfect ively because of t he  d i r ec t ion  of t h e  magnetic f i e l d .  
Typical e f f e c t s  of dead zone on t r ans i en t  response with t h e  i n i t i a l  angular 
momentum not a l ined  with t h e  magnetic f i e l d  are  shown in f igu re  9 .  The e f f e c t  
of adding an ex te rna l  disturbance torque i s  given in f igu re  g ( b ) .  m e  curves 
shown are for t h e  l imi t ing  case of very s m a l l  sampling i n t e r v a l s .  Because of 
t h e  t e s t  s igna l  required,  t h e  dead zone only reduces e f f ec t ive ly  t h e  applied 
magnetic moment component t o  one-sixth of t h e  ''on'' value,  r a the r  than zero.  
For t h e  d i r ec t ions  of i n i t i a l  conditions and ex terna l  torques considered, 
increasing the  dead zone causes a de te r io ra t ion  i n  speed of angular momentum 
reduction. However, for a case such as t h a t  previously invest igated i n  which 
the  i n i t i a l  momentum vector i s  p a r a l l e l  with t h e  magnetic f i e l d  and a r e l a -  
t i v e l y  large gain i s  used, a dead zone would be bene f i c i a l  f o r  the t r ans i en t  
response i n  order t o  e f f ec t ive ly  reduce t h e  ga in .  I n  addi t ion,  t he  t o t a l  c o i l  
current  consumed can be considerably reduced with only .a s m a l l  penalty i n  
momentum removal r a t e .  For t he  dead zone increment IAV/nldz = 0.08, t h e  t o t a l  
c o i l  current  f o r  t he  time i n t e r v a l  shown i n  f igu re  g ( a )  i s  reduced t o  0.33 of 
t h e  amopt  used with no dead zone present and no ex terna l  torque.  
zone lAV/nIdz = 0.32, t he  t o t a l  current  i s  f u r t h e r  reduced t o  0.20 of  the  no 
dead-zone case.  

For dead 

SamplLng .. ... .~ i n t e r v a l .  - The e f f e c t  of sampling i n t e r v a l  va r i a t ions  without 
dead zone present on t r ans i en t  response i s  shown i n  f igu re  10. The e f f e c t  of 
ex te rna l  torque i s  added i n  f igu re  10 (b ) .  Note t h a t  va r i a t ions  i n  the  s a -  
p l ing  i n t e r v a l  include va r i a t ions  i n  the  t e s t  s igna l  durat ion a l s o .  A s  would 
be e q e c t e d ,  an increase i n  sampling i n t e r v a l  causes a de te r iora t ion  i n  
t r ans i en t  performance. 

Momentum ~ ~ _ _  wheel-speed measurement -- e r r o r s .  - Typical t r a n s i e n t s  with wheel- 
speed measurement e r r o r s  present a r e  shown i n  f igu re  11. 
the  manner i n  which the  measurement e r r o r  i s  included i s  given i n  the  analysis  
sec t ion .  Note t h a t  repeat runs of these time h i s t o r i e s  would vary because of 
t h e  va r i a t ions  i n  measurement e r r o r  f o r  each run. Although su f f i c i en t  runs 
were not computed t o  obtain t r u e  averages, a su f f i c i en t  number were made so 
t h a t  " typical"  t i m e  h i s t o r i e s  could be presented. For each average value of 
e r r o r ,  t he  sampling i n t e r v a l  and t h e  dead zone a re  adjusted t o  minimize simul- 
taneously the  de t e r io ra t ing  e f f e c t s  of measurement e r r o r ,  sampling in t e rva l ,  
and dead zone. The r m s  value of 1 percent represents  about an upper l imi t  
f o r  s a t i s f ac to ry  performance. 

The descr ip t ion  of 

Control-system --- time- constant .  - For t he  previous ca lcu la t ions ,  coupling 
between the  magnetic unloading system and t h e  primary a t t i t u d e  cont ro l  system 
w a s  neglected a l toge ther .  To explore possible  coupling e f f e c t s  f o r  t he  adap- 
t i v e  case,  a f i r s t -o rde r  representat ion of t h e  a t t i t u d e  con t ro l  system 

21 



dynamics w a s  used as explained i n  the  analysis  sec t ion .  The e f f e c t  of t h i s  
parameter, with and without measurement e r r o r  present,  i s  shown i n  f igure  12. 
The same time constant has been assumed for each ax is  and no i n t e r a x i s  cou- 
pl ing terms have been included. Hence, t h e  quantity G given i n  the  analysis  
section ( e q .  (43) )  contains only diagonal elements equal t o  
t o  the  previous f igure ,  the  sampling i n t e r v a l  and dead zone were held constant 
f o r  t h i s  comparison. 
the  time constant i s  grea te r  when measurement e r r o r  i s  present .  Even with the  
measurement e r r o r  present ,  the  e f f e c t  of the  time constant i s  seen t o  be s m a l l  
so long as it does not exceed about 0.005 o r b i t a l  period, which i s  conserva- 
t i v e  f o r  a high gain system. 

T ~ .  ~n contrast  

A s  indicated by the  f igure ,  t h e  de te r iora t ing  e f f e c t  of 

CONCLUDING RFMARKS 

An invest igat ion has been made of the  use of magnetic torques f o r  
desaturating stored angular momentum i n  an a t t i t u d e  control  system of an 
i n e r t i a l l y  oriented s a t e l l i t e .  An important aspect of the  problem i s  t h a t  
t h e  d i rec t ion  of the  cont ro l  torque i s  r e s t r i c t e d  a t  any given ins tan t  of 
t ime. Thus, the  time varying propert ies  of the  magnetic f i e l d  r e l a t i v e  t o  
the vehicle must be used, although only instantaneous information on the  mag- 
ne t ic  f i e l d  i s  avai lable  f o r  the  control  function which determines the 
magnetic moment. 

A consequence of the r e s t r i c t i o n  on the  applied torque d i rec t ion  i s  the  
e f f e c t  of magnetic moment gain.  This e f f e c t  occurs f o r  both the  on-off and 
proportional systems. For gains t h a t  are too low, t rans ien t  performance i s  
slow. For high gains,  t r a n s i e n t  performance i s  good f o r  most or ien ta t ions  of 
i n i t i a l  wheel angular momentum. However, when the angular momentum vector 
becomes approximately al ined with the  e a r t h ' s  magnetic f i e l d ,  a high gain can 
cause the performance t o  de te r iora te ,  since t h e  applied torque keeps the  wheel 
angular momentum vector  too closely al ined with the  e a r t h ' s  magnetic f i e l d  
vector .  Thus, care must be used i n  the  se lec t ion  of gain so t h a t  performance 
i s  adequate f o r  a l l  o r ien ta t ions  of wheel angular momentum. The use of a dead 
zone i n  the cont ro l  function w i l l  a l l e v i a t e  t h i s  problem when as high a gain 
as possible i s  des i red .  Hence, even f o r  a system with equal control  system 
parameters f o r  each cont ro l  axis ,  the  t r a n s i e n t  response c h a r a c t e r i s t i c s  w i l l  
vary f o r  each a x i s  since they w i l l  a l so  depend upon the  magnetic f i e l d  
var ia t ion .  

The analysis  indicated t h a t  the  adaptive system would give i d e n t i c a l  
performance with the  magnetometer system so long as system imperfections and 
adaptive system t e s t  inputs were neglected. The adaptive system negates the 
need f o r  a magnetometer. On the other  hand, an adaptive system needs grea te r  
accuracy f o r  i t s  momentum wheel- speed measurements and needs the  components 
f o r  a rudimentary sampled da ta  system. Hence, the adaptive system i s  most 
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applicable t o  vehicles  such as the  Orbiting Astronomical Observatory i n  which 
precise  momentum-wheel cont ro l  and analogous s igna l  processing equipment are  
already required.  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  C a l i f  ., Dec. 3, 1964 



APPENDIX 

AN APPROXIMATION OF TKF: EARTH'S W N E T I C  FDLD VARIATION 

FOR AN INERTIALLY ORlErJTED VEHICLE 

To obtain a representat ion of t he  e a r t h ' s  magnetic f i e l d  as a constant 
magnitude vector which ro t a t e s  at a constant angular r a t e ,  t he  following 
approximations have f i r s t  been made. The e a r t h ' s  f i e l d  i s  represented by a 
simple magnetic dipole  and t h e  magnetic pole i s  assumed t o  be at the  geo- 
graphic pole .  With these  assumptions, t h e  e a r t h ' s  magnetic f i e l d  i s  repre-  
sented by an i n e r t i a l l y  f ixed  d ipole .  The dipole  of s t rength  p i s  a l ined  
with t h e  z1 ax&s of an i n e r t i a l l y  f ixed  x1, y1, z1 coordinate system. The 
magnetic f i e l d ,  B y  can be expressed i n  the  
system shown i n  sketch ( e ) .  

r y  p, 7 spher ica l  coordinate 
The equations are  ( e . g .  r e f .  11) 

I 
* I  

Sketch ( e )  

Br = 3 -3 cos p. 

B7 = 0 J 
Components of t he  magnetic f i e l d  i n  
t h e  r ,  p, 7 d i rec t ions  f o r  a point 
given by the  r ,  p, 7 coordinates can 
be transformed t o  the  x1, y l y  z1 
components by the  following 
transformation : 

s i n  p cos 7 cos p. cos 7 - s in  7 

s i n  p. s i n  7 cos p. s i n  7 

cos p - s in  1-1 0 

The subs t i tu t ion  of equations ( A l )  i n to  equation ( M )  y ie lds  

1 B ~ ,  = 2 s i n  p cos p cos 7 r3 

3P By1 = 3 s i n  p. cos p s i n  7 

I 



Next the  xl, yl, z1 magnetic f i e l d  components a re  obtained for a point  
described by the  r ,  8 ,  cp coordinates shown i n  sketch ( d ) .  

This system i s  more convenient f o r  
t he  representat ion of o r b i t  motion. The 
ax i s  x 1  i s  selected t o  be the  l i n e  of 
nodes. The or ien ta t ion  of t he  
x2, y2, 22 ax i s  system i s  given by a 
ro t a t ion  about t he  x1  axis through 
the  angle cp .  The o r b i t a l  plane is  the  
x2y2 plane. The pos i t ion  of t he  vehi- 
c l e  i n  the  o r b i t a l  plane i s  given by 
8 ,  a ro t a t ion  about the  z2 ax i s .  For 
a c i r cu la r  o r b i t  (constant  
va r i e s  at a constant r a t e ,  io. 
following re la t ionships  between angles 
i n  t h e  r ,  CL, 7 coordinate system and 
the  r ,  8 ,  cp system can be obtained 
f rom the  expressions f o r  components of 
a r a d i a l  vector i n  the  x1, y1, z1 
d i r e c t  ions : 

r ) ,  8 
The 

Sketch ( a )  

04) I cos 8 = s i n  CL cos 7 

s i n  e cos cp = s i n  p s i n  7 

s i n  8 s i n  cp = cos p. 

The subs t i tu t ion  of equations (Ab) in to  equations (A3) gives t h e  following 
r e l a t ions  for components of the  magnetic f i e l d  i n  the  x1, y1, z1 d i rec t ion  
f o r  a point described i n  the  r ,  8 ,  cp system 

- 3p cos e s i n  e s i n  cp Bxl - 7 

~y 1 r3 = - 3P sin2 8 cos cp s i n  cp 

Next, an orthogonal transformation i s  selected f o r  which the  magnetic 
f i e l d  along one ax i s  i s  independent of t he  angle 8 .  The transformation f r o m  
t he  x1, y1, z1 a x i s  system t o  t h e  x2, y2, z 2  system i s  used f o r  t h i s  
purpose. 



The subs t i tu t ion  of equations (A5) i n to  equation ( A 6 )  y i e lds  

1 = 1 2  s i n  cp s i n  2e Bx2 2 r3 

For a vehicle  i n  a c i r c u l a r  o r b i t  with a constant angular rate 
of the  magnetic f i e l d  components va r i e s  with a frequency of twice t h i s  angular 
ra te .  If t h e  l / 3  f a c t o r  i n  the  By2 equation i s  neglected, equations (A7) 
become 

eo, a port ion 

With t h i s  approximation and f o r  a f ixed inc l ina t ion  angle 
nent i s  constant and t h e  
tude vector,  (3p/2r3)sin cp, which r o t a t e s  a t  twice t h e  o r b i t a l  r a t e .  
xg, y3, z3 
al ined with the  f ixed  magnetic f i e l d  component and z3 al ined with the  
ro ta t ing  component. The transformation t o  t h e  x3, y3, z3 system i s  as 
follows : 

cp ,  t he  Bz2 compo- 
components represent a constant magni- 

xg 

Bx, and By2 
An 

ro t a t ing  coordinate system i s  selected ( f o r  convenience) with 

F:]= I o :  2e s i n  0 20 Fl] 
BZ2 

s i n  2Q -cos 20 
B Z 3  

Through use of equations ( A 8 )  and (A9), t h e  resu l t ing  magnetic f i e l d  compo- 
nents expressed i n  t h e  ro t a t ing  x3, y3, z3 system are found t o  be 
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I = P cos cp 
B ~ 3  r3 

By3 = 0 

J Bz3 = 5 3 P  s i n  cp 

The ro t a t ing  component of t h e  magnetic f i e l d ,  Bz3, corresponds t o  the  
term used i n  t h e  body of t h e  r epor t .  

B r  
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TABU I.- VALUES OF PARAMETERS USID IN "€E CALCULATED RFSULTS 

Magnetic F ie ld  External D i  s turbmce 
- 
B,, gauss 

B, = 0.2 + 0.12 s in (y t  + 90") t e x  = 0.2 + 0.3 s in (y t  + 30') 

= 0.8 + 0.1  s in  y t  
t e Y  = 0.09 + 0.16 s in (y t  - 90') 

B, = 0.2 s in (y t  + 1 8 0 ~ )  t e z  = 0.8 + 0.4 s in (y t  + 60') 

- 
B2, gauss 

Bx = 0.213 

= 0.20 s in (y t  - 90°) 

B, = 0.20 s in (y t  + 180') 

te, = 0.73 

= 0.68 s in (y t  - 90°) 
teY 
teZ = 0.68 s in (y t  + 180°) 

- 
B,, gauss 

B, = 0.215 + 0.043 s i n  y t  

= 0.20 s in (y t  - 90") 

B, = -0 .Ob + 0.20 s i n ( y t  + 1 8 0 ~ )  

I n i t i a l  Conditions 

h70), 

hy = 0.55 

h, = 0.20 

h, = -0 -75 





Magnetometer 

i ( t ’ U  

k (b)  

- -  
Denotes vector cross product j x k 

(a) Magnetometer on-off system. 
(b) Adaptive on-off system. 

Figure 1.- Block diagrams of magnetic torquer systems. 
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Figure 2 .  - Comparison of t r a n s i e n t  
response f o r  proport ional  and 
on-off systems, El. 
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Figure 3. - Comparison of t r a n s i e n t  
response for proport ional  and 
on-off systems with ex terna l  
disturbance, El, Fel. 

32 



1.2 

x .8 
0 
E 
I 

E 
c .- 
- 

.4 - 

0 

r 
3 

- 2  

- 

- 

- 2 Coils ----- 

- 

0 .2 .4 .6 .8 
Br 
B 
- 

(a) M a x i m  value of minimum root .  
(b)  Gain required f o r  maxim-minimum roo t .  

Figure 4.-  Ef fec t  of r a t i o  of  f i xed  t o  ro t a t ing  components of t he  e a r t h ' s  
magnetic f i e l d  on t h e  system as obtained from the  s implif ied ana lys i s .  
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( e )  High gain, /gI constant, B2, 
k = 624. k = 156. - 

k = 156. k = 624. 

Figure 5 . -  Ef fec t  of gain on t r ans i en t  response of proportional system. 

34 



r r 

-.E L I I I I I I I I -.E I I 

.4 - .4 - 

h 

I I I I I 
0 _I .2 .3 .4 .5 
- -.E 

t/P t/P 

- 
(a) Moderate gain, IB'I constant,  &, ( e )  High gain, constant, Bz, 

(b) Moderate gain, var ies ,  &, (a) High gain, var ies ,  &, 
n = 12.5. n = 50. 
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Figure 6 . -  Effect  of gain on t r ans i en t  response of on-off system. 
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Figure 7.- Effect of gain on steady-state response - with external disturbance 
for proportional system, tg,. 
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(a) Moderate gain, n = 12.5. 
(b) High gain, n = 50. 

Figure 8.- Effect of gain on steady-state response with external disturbance 
for on-off system, 732, Fez. 

37 

I 



. a  

.6 

v .4 

.2 

0 

( b )  

A I  
. I  .2 .3  .4 .5 

t / P  

(b )  With ex-beernal disturbance, t e l .  
(a)  No external  disturbance. - 

Figure 9 . -  Effect  of dead - -  zone on adaptive on-off system performance, 
BL, h(O),, n = 12.5. 
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Effect of sampling interval on on-off adaptive system 
B1, E ( O ) ~ ,  n = 12.5. 
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Figure 11.- Effect of wheel-speed measurement error on on-off adaptive system 
performance, El, E(o),, n = 12.5. 
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Figure 12.- Effect of momentum wheel control system time constant on on-off 
.adaptive system, T = 0.01, 31, E(0) n = 12.5. 
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